Baidu
map

PNAS:新型神经形态微芯片实时模拟大脑信息处理过程

2013-07-24 PNAS bio360

日前,瑞士苏黎世大学与联邦理工学院等机构的研究人员首次成功研制出一种新型微芯片,能够实时模拟大脑处理信息的过程。这将有助于科学家们制造出能同周围环境实时交互的认知系统。相关研究论文刊登在了近期出版的(PNAS)杂志上。 此前的类似研究都局限于在传统计算机上研制神经网络模型或在超级计算机上模拟复杂的神经网络,而这项最新研究的思路是,研发在大小、处理速度和能耗方面都可与真实大脑相媲美的电路。瑞士苏黎

日前,瑞士苏黎世大学与联邦理工学院等机构的研究人员首次成功研制出一种新型微芯片,能够实时模拟大脑处理信息的过程。这将有助于科学家们制造出能同周围环境实时交互的认知系统。相关研究论文刊登在了近期出版的(PNAS)杂志上。

此前的类似研究都局限于在传统计算机上研制神经网络模型或在超级计算机上模拟复杂的神经网络,而这项最新研究的思路是,研发在大小、处理速度和能耗方面都可与真实大脑相媲美的电路。瑞士苏黎世大学、

研究人员表示,这项实验的目标是直接在微芯片上模拟生物神经元和突触的属性。

做到这一点面临的主要挑战,是配置由人造神经元组成的网络,让其能执行特定的任务。瑞士科学家现在已经成功地攻克了这一“碉堡”,他们研发出一种神经形态系统,能够实时执行复杂的感觉运动任务,并借用这一系统,演示了一个需要短期记忆以及前因后果的决策任务,这一任务对于认知测试不可或缺。

在演示过程中,研究人员将这种人造神经元合并成能执行神经处理模块的网络,这些处理模块与所谓的“有限状态机”一样,能够将行为用公式表示出来,因此能采用一种自动化的方式,将其转移到神经形态硬件内。“有限状态机”是一个数学概念,用来描述逻辑过程或者计算机程序。

研究人员表示,这种网络连接模式与哺乳动物大脑内发现的结构非常类似。

这是科学家们首次演示如何构造出这种实时的硬件神经处理系统。

研究人员总结道,新方法研制出的神经形态芯片可以像“变形金刚”一样,构造出不同类型的行为模式。新研究对研发出新的脑启发技术至关重要。例如,科学家们可以借用这一技术,将芯片同传感神经形态元件(例如人造耳蜗或视网膜)结合在一起,制造出复杂的能同周围环境实时交互的认知系统。

E. Neftci, J. Binas, U. Rutishauser, E. Chicca, G. Indiveri, R. J. Douglas. Synthesizing cognition in neuromorphic electronic systems. Proceedings of the National Academy of Sciences, July 22, 2013; DOI: 10.1073/pnas.1212083110

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (2)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1855417, encodeId=6fe2185541e98, content=<a href='/topic/show?id=f32014428fc' target=_blank style='color:#2F92EE;'>#PNAS#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=53, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=14428, encryptionId=f32014428fc, topicName=PNAS)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=08e964, createdName=drwjr, createdTime=Sun Apr 27 16:18:00 CST 2014, time=2014-04-27, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1458892, encodeId=c35f145889221, content=<a href='/topic/show?id=53cc8691532' target=_blank style='color:#2F92EE;'>#芯片#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=61, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=86915, encryptionId=53cc8691532, topicName=芯片)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=8bf76117088, createdName=lixiaol, createdTime=Fri Jul 26 02:18:00 CST 2013, time=2013-07-26, status=1, ipAttribution=)]
    2014-04-27 drwjr
  2. [GetPortalCommentsPageByObjectIdResponse(id=1855417, encodeId=6fe2185541e98, content=<a href='/topic/show?id=f32014428fc' target=_blank style='color:#2F92EE;'>#PNAS#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=53, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=14428, encryptionId=f32014428fc, topicName=PNAS)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=08e964, createdName=drwjr, createdTime=Sun Apr 27 16:18:00 CST 2014, time=2014-04-27, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1458892, encodeId=c35f145889221, content=<a href='/topic/show?id=53cc8691532' target=_blank style='color:#2F92EE;'>#芯片#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=61, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=86915, encryptionId=53cc8691532, topicName=芯片)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=8bf76117088, createdName=lixiaol, createdTime=Fri Jul 26 02:18:00 CST 2013, time=2013-07-26, status=1, ipAttribution=)]
    2013-07-26 lixiaol

相关资讯

Nat Neurosci:神经元DNA双链断裂参与痴呆的发病

长期以来,科学家认为一种特殊的DNA损伤——DNA双链断裂(DSB)对脑细胞特别有害,是老年病如老年痴呆背后的主要推手。据物理学家组织网3月24日报道,最近,美国加利福尼亚大学旧金山分校格拉斯通研究所科学家发现,DSB实际上是一种常规的、非伤害性脑活动过程的一部分。这一发现有助于理解老年痴呆症背后的机制。他们还利用小鼠模型确定了两种治疗方案,能降低老年痴呆症中过高的DSB破坏。相关论文发表在24日

NRR:孤雌胚胎干细胞更易向神经元样细胞分化

一项关于“Differentiation of neuron-like cells from mouse parthenogenetic embryonic stem cells”的研究,对小鼠孤雌胚胎干细胞和胚胎干细胞向神经细胞分化的潜力进行了比较。结果发现:(1)孤雌胚胎干细胞和胚胎干细胞的核型保持正常,性染色体为XX。(2)孤雌胚胎干细胞和受精胚来源的胚胎干细胞高表达多能性蛋白Oct4 mR

Nature:进食行为仅由两个神经元控制

神经系统中有多少冗余目前仍是一个没有明确答案的问题。现在,Motojiro Yoshihara及其同事识别出了一对果蝇脑细胞,他们将其称之为Fdg或“进食”神经元,其人工激活足以诱导果蝇完整的进食运动程序。仅仅将这两个神经元抑制或切除就会消除由糖诱导的进食反射,但只将其中一个切除则会导致非对称的运动。这项工作揭示了感觉、代谢和运动系统的耦合中一个严重的瓶颈。 A single pair of

Neuron:关键机制可增强大脑神经元间的信号传递功能

近日,刊登在国际著名杂志Neuron上的一篇研究报告中,来自马克斯普朗克学会的研究者通过研究发现了一种新型的重要分子机制,其可以使得神经元变成大脑信号调节适应真正的主导者。 神经元的沟通是通过细胞间的突触接触来实现的,首先发射神经元必须处于刺激状态,其可以产生名为神经递质的化学信使,这些信号分子随后可以达到受体细胞,并且影响其激活状态,这种信号传递过程高度复杂而且高度受控,行使功能的主角就是突触

PNAS:放射疗法改变小鼠的神经元结构

一项研究发现,颅脑照射——这是常用于治疗脑瘤的一种方法——会诱导小鼠大脑产生持久的结构变化。颅脑照射疗法有效地抢先阻止了脑癌的发展,并且改善了存活,但是它可能破坏健康的组织并导致认知的削弱。Vipan K. Parihar和Charles L. Limoli试图阐明辐射暴露如何削弱大脑功能,他们研究了辐射暴露对小鼠大脑的一个称为海马区的区域中的神经元的结构和连接的效应。这组作者让小鼠暴露在两种不同

NRN:皮质中间神经元的网络效应

有人提出细胞类型的多样性可能是,至少部分是前额皮质中与神经细胞相关的行为变化性的基础。为了支持这一假设,Kvitsiani等人如今指出,前扣带回(ACC)中的小清蛋白-表达(PV+)中间神经元以及生长激素抑制素-表达(SOM+)中间神经元的一个亚型,与不同的网络及行为功能有关。 篮状细胞是一种类型的PV+中间神经元,提供了邻近体细胞抑制,而Martinotti细胞是SOM+中间神经元,能够抑制树

Baidu
map
Baidu
map
Baidu
map