SAS常用程序(7)
2012-04-17 生物谷 不详
2.7 多元回归分析的SAS程序 在阅读以下内容之前,请先阅读第一章“SAS软件基本操作”。 2.7.1 多元回归方程计算 多元回归方程的SAS程序与一元回归方程的SAS程序类似,只是变量个数有所增加,这里不再详述,只给出一个例子。 例2.20 计算表2-23
2.7 多元回归分析的SAS程序
在阅读以下内容之前,请先阅读第一章“SAS软件基本操作”。
2.7.1 多元回归方程计算
多元回归方程的SAS程序与一元回归方程的SAS程序类似,只是变量个数有所增加,这里不再详述,只给出一个例子。
例2.20 计算表2-23中萎蔫度Y在蛋白和脯氨酸含量上的多元回归方程。
解:
options linesize = 76;
data mulreg;
infile ‘a:\2-8data.dat’;
input y r1 r7 r8 r15 l3 l9 pro;
run;
proc reg;
model y = r1 r7 r8 r15 l3 l9 pro;
run;
输出结果见表2-25。
表2-25 例2.20的多元回归分析
The SAS System
Model: MODEL1
Dependent Variable: Y
Analysis of Variance
|
|
Sum of |
Mean |
|
|
Source |
DF |
Squares |
Square |
F Value |
Prob>F |
|
|
|
|
|
|
Model |
7 |
0.01213 |
0.00173 |
5.532 |
0.0140 |
Error |
8 |
0.00251 |
0.00031 |
|
|
C Total |
15 |
0.01464 |
|
|
|
Root MSE |
0.01770 |
R-square |
0.8288 |
Dep Mean |
0.99496 |
Adj R-sq |
0.6790 |
C.V. |
1.77883 |
|
|
Parameter Estimates
|
|
Parameter |
Standard |
T for H0: |
|
Variable |
DF |
Estimate |
Error |
Parameter=0 |
Prob>|T| |
|
|
|
|
|
|
INTERCEP |
1 |
0.940788 |
0.02246040 |
41.887 |
0.0001 |
R1 |
1 |
0.000298 |
0.00019724 |
1.510 |
0.1695 |
R7 |
1 |
-0.000099683 |
0.00008626 |
-1.156 |
0.2812 |
R8 |
1 |
-0.000079812 |
0.00005456 |
-1.463 |
0.1816 |
R15 |
1 |
0.000060935 |
0.00008158 |
0.747 |
0.4765 |
L3 |
1 |
0.000090482 |
本文系梅斯医学(MedSci)原创编译整理,转载需授权!--> 小提示:本篇资讯需要登录阅读,点击跳转登录
版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。 在此留言 相关资讯SAS常用程序(1)2.1 利用SAS软件描述样本数据 用SAS可以对样本数据进行全面描述,得出样本的各种特征数以及频数分布图。在阅读以下内容之前请先阅读第一章“SAS软件基本操作”。 2.1.1 用MEANS语句描述数据 例 2.1 计算课本上习题1.2的平均数和标准差。 解 SAS常用程序(3)2.4 单因素方差分析的SAS程序 在阅读以下内容之前,请先阅读第一章"SAS软件基本操作"。 单因素实验设计又称为完全随机化实验设计。该实验设计要求实验条件或实验环境的同质性很高。例如,比较a个作物品种的产量,每一品种设置n个重复,全部实验共有an次。根据完全随机化实验设计的要求,试验田中的an个试验小区的土质、肥力、含水量、小气候、田间管理等条件 SAS常用程序(4)2.5 常用实验设计方差分析的SAS程序 在这本教材中我们只介绍了完全随机化实验设计和交叉分组实验设计的方差分析。除这两种实验设计外,还有很多实验设计需要用方差分析的方法处理数据。如随机化完全区组设计、拉丁方设计、裂区设计、套设计、正交设计等。这些实验设计方法在很多教材中都可以找到,限于篇幅在这里就不做更多的介绍了,只给出线性统计模型、均方期望和检验统计量。完全随机化 SAS常用程序(6)2.6 相关与回归分析的SAS程序 在阅读以下内容之前,请先阅读第一章“SAS软件基本操作”。 2.6.1 一元线性回归分析 例 2.16 以课本上表10-1中的数据为例,求出一元回归方程、检验回归显著性并求出回归及预测值的0.95置信区间。 解: 使用PROC REG过程进行分析,SAS SAS常用程序(5)2.5.4 两因素随机化区组实验的方差分析 一个两因素交叉分组实验,若每一处理重复n次,全部实验共abn次(见课本9.1.1)。这abn次实验的实验条件或实验材料必须具有同质性。否则,由于实验材料或实验条件的差异所引起的误差会混杂于实验误差中,影响试验结果的可靠性。为避免这种情况的发生,与随机化完全区组的做法一样,将每一套水平组合,安排在一个区组中,n次重复构成了n个 SAS常用程序(2)2.2 统计假设检验的SAS程序 在阅读以下内容之前,请先阅读第一章“SAS软件基本操作”。 2.2.1 单个样本的t检验 对于课本5.1.4所介绍的单个样本t检验,可以使用PROC MEANS过程计算。PROC MEANS过程在2.1.1 |
#SAS#
56